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Abstract—A simple algebraic model for the calculation of flows with adverse pressure gradients is suggested
within the framework of the traditional two-layer Clauser scheme of turbulent boundary layer. The accuracy of
the suggested model compares favorably with that of the best known algebraic and differential models of tur-
bulence. The turbulent viscosity in the inner region of the boundary layer is described by the relation in which
the linear scale is provided by the distance to the wall, and the velocity scale is defined by the dynamic velocity
and Clauser’s equilibrium parameter. A cubic damping factor is used for description of interaction between the
molecular and turbulent processes of transport in the transition region. In the outer region, the relation is
employed in which the linear scale is provided by the displacement thickness, and the velocity scale is provided
by the quantity dependent on the dynamic velocity, Clauser’s equilibrium parameter, and the parameters of
averaged flow at the point at which a maximum of tangential stress is attained. The results of testing the sug-
gested model are given as illustrated by the example of calculation of a series of turbulent layers with moderate

'

and strong pressure gradients, including preseparation flow modes.

INTRODUCTION

In view of its great practical significance, the prob-
lem of describing turbulent boundary layers with an
adverse pressure gradient, including the prediction of
the position of the separation point, remains one of the
most urgent problems of the theory of wall turbulence.

The first Stanford Conference of 1968 [1] summed
up sorie results of a more than forty-year (if one starts
reckoning from Prandtl’s classical study of 1925 [2]
that initiated the semiempirical theory of turbulence)
period of development of algebraic models. Among
other things, the inefficiency of the then existing alge-
braic models for prediction of the separation of turbu-
lent boundary layers was stressed at the conference.

In the 1970s, the main hopes for success in solving
the problem at hand were associated with the develop-
ment of differential models of turbulence based on the
equations for second moments (the kinetic energy of
turbulence, the rate of its dissipation, the scale of turbu-
lence, etc.). However, the detailed analysis of the capa-
bilities of such models made at the second Stanford
Conference of 1980 has resulted in the conclusion that
these models as well fail to ensure an adequately reli-
able prediction of the characteristics of wall turbulent
flows with an adverse pressure gradient.

It was only in the early 1990s that several models of
turbulence were suggested which enable one to calcu-
late flows with a strong adverse pressure gradient with
an accuracy sufficient for practical applications. These
models include, in particular, the semidifferential Hor-
ton model [3], the differential models with one equa-

tion for turbulent viscosity suggested by Spalart and
Allmaras [4] and by Gulyaev, Kozlov and Sekundov
[5], and the semidifferential &~ model of Menter [6].
This is supported by the results of recent testing of
these and some other models in application to flows in
turbulent boundary layers with a longitudinal pressure
drop [7]. Nevertheless, the problem of constructing a
simple algebraic model whose accuracy would com-
pare well with the more complex models listed above
still retains its urgency for the given class of flows.

We suggest an algebraic model and give the results
of its testing.

DESCRIPTION OF THE MODEL

In this paper, we use the results of analysis of four
algebraic models based on the use of different relations
for turbulent viscosity in the outer region to demon-
strate that the universal main scales of the outer region
on a flat plate are the dynamic velocity v = (Tw/p)'”

and the boundary layer displacement thickness &*. In
so doing, out of four treated relations for turbulent vis-
cosity in the outer region, based on the use of different
linear and velocity scales, it is only the relation vy, =
kv, &*y (k = 0.41; vy is Klebanov’s intermittency
parameter), referred to in [8] as the Clauser-3 formula,
that possesses the property of universality (irrespective
of the Reynolds number constructed by the momentum
thickness, Reg = U,6/v) in the entire treated range of

Reynolds numbers (320 < Reg < 10%).
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Most of the inner region of the boundary layer on a
flat plate is the so-called region of validity of the wall
law or the region of logarithmic velocity profile,

wv, =1/kin(yv )+B, k=041, B=51. (1)

In view of (1) and of the constancy of tangential
stress in this region, one can formulate the “linear”
model of turbulence in the inner region of the form

v =kyv D, (2)

in which the damping factor D must provide for the cor-
rect behavior of turbulent viscosity in the vicinity of the
wall [9],

vely o= 0y (0= 0.092-0.125);

turn into unity at yv _ /v 2 40; and satisfy the relation

n
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All of these requirements are satisfied by the damp-
ing function of the form

D=[1-exp(-yv VAP, A=12. 4

However, as a result of detailed experimental inves-
tigations of steady-state flow in a round pige at high
Reynolds numbers (up to Re = 3.5x 107), it was
recently shown [10] that the value of the Karman con-
stant £ = 0.41 (universally accepted until recently) must
in fact be replaced by k = 0.436, and the value of the
constant B = 5.1 in logarithmic law (1) must be
replaced by the value of 6.13.

In view of these values of empirical constants, for-
mula (3) produces in the damping factor (4) the value
of the constant 4 = 13, as a result of which the model of
turbulence on a flat plate may be represented in the final
form

vy = kv min{yD, 6*v},
D =1- exp(—yv*/\'A)]B, )
-1
y = [1+55(y/8)°] ,
A =13, k = 0436,
where & is the boundary layer thickness determined by

the level of u/U, = 0.995 (U, is the velocity on the outer
bound of the boundary layer).

The results of calculations of the friction coefficient
Cy as a function of the Reynolds number Rey and their
comparison with the experimental data represented by
the empirical formula of Bradshaw,

o 0.01013
7" log(Reg) - 1.02
are given in Fig. 1, from which one can see that model

(5) describes fairly accurately the empirical depen-
dence in a wide range of Reynolds numbers. This gives

- 0.00075, 6)
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Fig. 1. Comparison of the calculated and experimentally
derived dependences of the coefficient of friction on a flat
plate on the Reynolds number calculated by the momentum
thickness: I—Bradshaw’s formula (6); II—calculation by
model (5).

some ground for trying to generalize model (5) to the
case of flow with an adverse pressure gradient.

GENERALIZATION OF THE MODEL
FOR FLOWS WITH ADVERSE PRESSURE
GRADIENT

As is known, the characteristic difference of a flow
in boundary layer with an adverse pressure gradient
(dp/dx > 0) from a flow on a flat plate (dp/dx = 0) con-
sists in that, in the former case, the friction stress
reaches a maximum inside the boundary layer (1, =

T|,_, ), while on a flat plate the highest value of the

friction stress is observed on the wall, T, = Tl, - .
Depending on the conditions of flow, the value of the
coordinate y,, lies in the 0 < y,, < 0.58 range. As to the
quantity T,,, it is defined by the balance of the effect
of forces of inertia and pressure and, in view of the log-
arithmic velocity law (1), may be approximately calcu-
lated by the formula

2¥m_U. _ o+
Tmax—Tw(l +E§U|y—=vﬁ), B = tw

Relation (7) enables one to generalize the above-
treated model of turbulence for a flow on a flat plate to
the case of flow with an adverse pressure gradient. For
this purpose, it is sufficient that the velocity scale in the
outer region be provided by the quantity

dp

Tl )

1/2
2ym_ U,
VSO = V*(l +E§TB) ’

Y=Yn

(8)
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Fig. 2. The calculated and experimentally derived distribu-
tion of integral parameters of boundary layer for the exper-
iment of [11]: (/) longitudinal distribution of the friction
coefficient Cf, (2) of the form parameter H, (3) of the veloc-
ity U, on the outer bound of the boundary layer; I—calcula-
tion by model (10), II—by the Horton model [3], [Il—by the
Menter model [6]. The curves indicate the calculation data,
and the points indicate the experimental data.

o H U,
25725

7, 2.0120

0.003
15115
0.002
1.0+ 10
0.001
0.5+5
---1II
1 ! 1 O
0 1.0 2.0 3.0
X, m

Fig. 4. The calculated and experimentally derived distribu-
tion of integral parameters of boundary layer for experiment
4500 of [1]. Designations are the same as in Fig. 2.

and that in the inner region be provided by

172

va) = v,(1+5B)
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Fig. 3. The calculated and experimentally derived distribu-
tion of integral parameters of boundary layer for experiment
3300 of [1]. Designations are the same as in Fig. 2.
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Fig. 5. The calculated and experimentally derived distribu-
tion of integral parameters of boundary layer for experiment
4800 of [1]. Designations are the same as in Fig. 2.

Vr = kmin{yvgD, 8*vgY},
D = [1-exp(-yvg/vA)L’,

(10)

-1
v = [1+55(3/8)° ,
A =13, k= 0.436.

which is approximately egual to the actual value of
dynamic velocity [T(y)/p]'~.

As a result, the model of turbulence for flows with
adverse pressure gradients takes the form

Obviously, for B = 0 (flat plate), the values of scales
vy and vy, (8) and (9) coincide and are equal to the
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Fig. 6. The calculated and experimentally derived distribu-
tion of integral parameters of boundary layer for experiment
1100 of [1]. Designations are the same as in Fig. 2.

dynamic velocity on the wall v, and model (10)
transforms to model (5) for a flat plate.

We will further treat the results of testing of model
(10) as illustrated by the example of calculation of sev-
eral flows in turbulent layer with an adverse pressure
gradient.

THE RESULTS OF TESTING THE MODEL

For testing the above-described model of turbu-
lence, five experiments were selected involving incom-
pressible turbulent layer with an adverse pressure gra-
dient, the results of which were presented in the pro-
ceedings of the Stanford Conference of 1968 [1]
(experiments 1100, 1200, 3300, 4500, 4800), as well as
the results of more recent experiments [11].

The so-called inverse method [12] was used for
solving the boundary-layer equations (the distribution
of the displacement thickness along the outer bound of
the boundary layer is preassigned as the input data from
the experiment, rather than the velocity distribution).
As is shown in [7], such an approach enables one to
more objectively estimate the capabilities of turbulence
models than the traditional direct method. The numeri-
cal integration of the equations was performed using a
two-layer marching scheme of the first order of accu-
racy by the longitudinal coordinate and of the second
order of accuracy by the transverse coordinate.

Figures 2-7 give the results of calculations of the
following integral characteristics for all treated bound-
ary layers: the friction coefficient C; = 21y/p U 3 , the
form parameter H = 6*/8, and the velocity U, on the

outer bound (when the inverse method is used, this
quantity is determined in the process of solving the
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Fig. 7. The calculated and experimentally derived distribu-
tion of integral parameters of boundary layer for experiment
1200 of [1]. Designations are the same as in Fig. 2.

problem). Given in these figures for comparison with
model (10) are the results of calculations using the
semidifferential Horton model [3] and the k—® model
of Menter [6], which, as shown in [7], provide the most
reliable description of turbulent boundary layers with
adverse pressure gradients.

As demonstrated by the results, in all of the treated
cases, the suggested model is in fact as accurate as the
Horton and Menter models. It is only in experiment
4500 (Fig. 4) that model (10) somewhat underestimates
the value of the form parameter H as compared with the
Horton and Menter models and with the experimental
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Fig. 8. The calculated and experimentally derived velocity
profiles for experiment 4500 at x = 3.048 m. Designations
are the same as in Fig. 2.
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Fig. 9. The calculated and experimentally derived velocity
profiles for experiment 1200 at x = 3.932 m. Designations
are the same as in Fig. 2.
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Fig. 10. The calculated and experimentally derived velocity
profiles for the experiment of [11] atx = 3.4 m. Designations
are the same as in Fig. 2.

this model describes the velocity profile as well as the
other two models (see Figs. 9 and 10).

Therefore, it is possible to conclude that, for the
given class of flows (boundary layer with an adverse
pressure gradient), the suggested algebraic model by
and large compares favorably with modern (much more
complicated) semidifferential and differential models
of turbulence.
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